A short introduction to METAPOST

Klaus Hoppner

Abstract

METAPOST is a program strongly related to
Knuth’s orginal METAFONT. It uses nearly the
same graphics language and syntax, but instead
of bitmap fonts it produces PostScript output. So
it can be used to create high quality graphics. In
METAPOST, points and paths may be described
by a set of linear equations that are solved by
the program. Thus, METAPOST becomes unique
among other tools like PSTricks or commercial
applications (e. g., Corel Draw). Additionally, the
PostScript subset created by METAPOST can be
interpreted by pdf TgX. So METAPOST figure can
be directly included with e. g., the standard graph-
ics package, while normal EPS images have to be
converted first to be usable with pdfIATEX.

Sommario

METAPOST & un programma fortemente legato
al METAFONT originale di Knuth. Usa pressoché
uguali sintassi e linguaggio orientato alla grafica,
ma produce un output PostScript invece di font
bitmap. Dunque puo essere usato per creare gra-
fici di alta qualita. In METAPOST, punti e linee
(percorsi) possono essere descritti da un insieme
di equazioni lineari risolte dal programma. Dun-
que, METAPOST svetta unico tra strumenti come
PSTricks o applicazioni commerciali (ad esempio
Corel Draw). In piu, il sottoinsieme di PostScript
generato da METAPOST puo essere interpretato da
pdf X TEX. Quindi le figure di METAPOST possono
essere incluse direttamente tramite, ad esempio,
il pacchetto standard graphics, mentre le normali
immagini EPS devono essere convertite prima di
essere usate con pdfIATEX.

1 History

When Knuth developed TEX, he also created a
set of new fonts, Computer Modern. For this, he
created his own font description language and the
program METAFONT, that converts a METAFONT
source into a bitmap, usually stored in a file with
the extension .px| or more often .pk. The major fea-
ture of METAFONT is that paths may be described
with a set of linear equations, that determines how
the single points of the path are related, and this
equation set is solved by the METAFONT program.
Additionally, Knuth extensively used parameters
within these equations, so different font series (e. g.,
bold and medium) could be produced from the
same equations by changing some parameters.

John D. Hobby created METAPOST as a system
using (nearly) the same programming language,
but with PostScript output. It was presented first
in TUGboat (HOBBY, [1989), while the first public
versions were released in the early 1990s. Some new
features were added to the Meta language, e. g., the
ability to include stuff typeset by TEX into a METR-
POST drawing (something, that wasn’t needed in
METAFONT for creating glyphs of a font, but is
very useful to put text labels into graphics).

Meanwhile METAPOST is maintained by the
METAPOST team, with Taco Hoekwater as chief
developer. Since then, many improvements were
made. For the future, they plan to release MPlib,
a component library that contains the METAPOST
engine and can be reused in other applications.

2 Basics

As mentioned before, METAPOST defines its own
programming language. It consists of the following
elements:

e points,
e pens,

e paths,

e numbers,

e colors (originally RGB only, meanwhile
CMYXK is supported)

Points are normally named by the letter z, rep-
resented by a pair (z,y).

Paths may contain geometrical elements (e. g.,
fullcircle) or may consist of points that are
connected by lines or Bézier curves.

Colors are tuples of three (RGB) or four
(CMYK) numbers.

For a short example let’s have a look on the
following example:

LiSTING 1: 15* example

filenametemplate

beginfig (1) ;

pickup pencircle scaled 1bp;

draw origin--(lcm,2cm)
..(0.5cm,1cm)..cycle;

endfig;

end

"%hj-%3c.mps";

It shows that each METAPOST figure is put be-
tween beginfig and endfig, with a number identi-
fying the figure. So, a METAPOST source may con-
tain several figures. Originally, when processing the

ArsTpXnica N° 6, Ottobre 2008

FIGURE 1: Example figure, as defined in listing [I]

source (e. g., ex.mp) with METAPOST (mpost ex),
the figure numbers were used as file extension
for the resulting PostScript files. In later releases,
the command filenametemplate was introduced,
that uses a syntax like the printf command in C.
In the example above, we would get a PostScript
file with the name ex-001.mps (and if we add a
figure with number 2, the PostScript output would
be written into ex-002.mps). Since pdfTEX recog-
nizes files with the extension .mps as METAPOST
output, the file could be easily used in a BTEX doc-
ument with \includegraphics{ex-001.mps} and
the document may be processed both by pdf TEX
and, in the original workflow, by compiling to DVI
and using dvips.

As in C, all statements may span multiple lines
and are finished by the “;” character.

The example figure itself shows a straight line
from the origin to the point (lcm,2cm). Then,
the path is closed by a Bézier curve via the point
(1.3cm, .3cm). For drawing, a round pen with diam-
eter of one PostScript point is used. METAPOST
knows the same units as TEX, like bp for PS points,
cm, mm. The result is shown in fig.

3 Defining points by linear equa-
tions

While there is nothing exciting about the first ex-
ample, we will see what makes METAPOST special
in a moment. Assume you want to draw a simple
rectangle (fig. . Then you know it consists of four
corners (e. g., with the lower left one in the origin),
that we will describe by the following equations:

LISTING 2: Rectangle

path pl[l;

z0 = origin;

x0 = x3;

x1l = x2;

y1 = yo0;

y3 = y2;

x1-x0 = 3cm;

y3-y0 = 2cm;

p0 = z0--z1--z2--z3--cycle;

fill pO withcolor blue;
draw pO withpen pencircle scaled 1bp;

You see, all corners besides zy aren’t defined
directly as (x,y) pairs but described by their re-

Introduction to METAPOST

z3 z2

2cm

z0 3cm z1

FIGURE 2: Rectangle, resulting from code in listing 2]

lations. While describing a rectangle with linear
equations seems like a bit of overkill, this META-
POST feature becomes really powerful for the con-
struction of complex paths.

4 Transformations of paths

METAPOST supports the following transforma-
tions of paths:

e Translations
pO shifted (x1, x2)

» Rotation
pO0 rotated alpha

o Scaling (in both directions, or in z or y direc-
tion individually)
pO scaled factor
pO xscaled xfactor
pO yscaled yfactor

o Slanting
pO slanted alpha

For example, the following ellipsis

is the output of the code

draw fullcircle xscaled 3cm
yscaled 2cm rotated 30;

5 Intersection points

Finding the intersection points of paths is another
nice METAPOST feature.

Assume you have a triangle. Theory says, if you
draw three lines, each of them from one corner of
the triangle to the mid point of the opposite side,
all these lines will intersect at the same point.

The following code shows how this can be demon-
strated in a METAPOST drawing;:

Introduction to METAPOST

LiSTING 3: Triangle 1

pickup pencircle scaled 1bp;

path pll;

z0 = origin;

z1 - z0 = 3cm*right;

z2 - z0 = 2.7cmxdir (40);

pO0 = z0--z1--z2--cycle;

pl = .5[z0,z1]--22;

p2 = .5[z1,z2]--20;

p3 = .5[z2,z0]--2z1;

draw pl withcolor blue;

draw p2 withcolor blue;

draw p3 withcolor blue;

draw pl intersectionpoint p2
withpen pencircle scaled 3bp;

draw pO;

This code is rather simple. It consists of three
parts.

First, the three points zg ... 22 are defined and
path pg is defined as the triangle with these points
as corners.

Second, the paths p;...ps are defined. Each
consists of a line from one corner to the mid point of
the opposite side. This may be easily expressed in
METRAPOST, since e. g., the statement .5[z1,z2]
is just the point on half the line from z; to zs.

Finally, after drawing all the paths defined
above, we mark the intersection point of p;
and pe. This is directly given by the command
pl intersectionpoint p2. It may be a bit more
complicated if two paths have more than one in-
tersection point.

The result of this drawing is shown in fig. [3]

z2

z0 z1

FIGURE 3: Construction of a triangle

6 Whatever it is ...

Coming back to the triangle in the latest example,
another interesting task is the following: draw a line
from one corner that is orthogonal to the opposite
side.

Let’s assume we want to draw the line from point
z2, so the opposite side is just the base line of our
triangle. Now we know two things:

1. The line is orthogonal to the base line (con-
nection of z0 and z1).

ArsTpXnica N° 6, Ottobre 2008

2. The starting point is in 23, the end point shall
be on the base line.

This may be directly expressed in METAPOST:

LisTING 4: Triangle 2

z10-z2 =
z10 =

whatever*((z1-z0) rotated 90);
whatever [z0,z1];

In the code above the end point of the line is
named z1g.

Here we see both conditions listed before: first,
the distance vector between z1¢ and 2z, is given by
the distance vector between z; and zg (i. e. the base
line), rotated by 90 degrees, scaled by an arbitrary
factor.

Second, z1g is located somewhere on the line
defined by the points zg and z;.

In both cases, I used a numerical value named
whatever. This may become an arbitrary number.
In fact, the value may change from statement to
statement, since the variable whatever is encapsu-
lated per statement.

z2

&
z0 z10 z1l

FIGURE 4: Triangle 2

As shown in fig. [}, METAPOST finds the correct
position for z1(as starting point of a perpendicular
line to the base line, with 25 as end point.

7 Time variables

A path in METAPOST may be imagined as the
travel of a vehicle. Paths are parameterized by
a time variable (what might be a bit misleading,
since of course the drawing is static). So a path has
a start and end time, and any point is correlated
to a time in between (and vice versa).

Here is some example, where time variables are
used:

LISTING 5: Time variables and subpaths

pickup pencircle scaled 1bp;
path pl[]l;
pO0 = origin{up}..(3cm,2cm);
pl = (-5mm,2cm)--(3cm,5mm) ;
draw pO dashed withdots;
draw pl dashed withdots;
(t0,t1) = pO intersectiontimes p1l;
draw subpath (0,t0) of pO
-- subpath (tl1,length(pl)) of pi;

ArsTpXnica N° 6, Ottobre 2008

We have two paths, pg and p;: a Bézier curve
from lower left to upper right, and a straight line
from upper left to lower right, drawn with dotted
lines.

Now we are not only interested in the intersec-
tion point of these paths, but we want to combine
the subpath of py before the intersection point with
the subpath of p; after this point, drawn with a
solid line in fig.

In this case, we need the time values of both
paths in the intersection point. For this, the state-
ment p0 intersectiontimes pl is used. The re-
sult of this is a pair (in fact a point), with the time
value of py in the intersection point as first part
(z-part) and the time value of p; as second part
(y-part).

As soon as these time values are known, the
desired path is constructed using subpath.

o o
o ° .

FIGURE 5: Using time variables and subpaths

8 Text and Labels

METAPOST allows to place labels into a figure.
In the simplest form, the text may be included
directly, without any typesetting done by TEX:

defaultfont := "ptmr8r";
defaultscale := 1.2;
label("this is a label",z0);

It will just add the text commands to write the
label text in 12pt Times Roman (since a font scal-
ing factor of one refers to 10pt) into the PostScript
code. Please note that := is used in the code above,
since new values are assigned to the variables, while
= is used in linear equations.

The action of placing a label at zp in the ex-
ample is rather straightforward. The 1label com-
mand centers the label at the given point. In
many cases, a suffix is appended to the label
command to define how the label is placed in
relation to the given point, i.e. top, bot (bot-
tom), 1ft (left), rt (right) or ulft, 11ft, urt,
1rt (e.g., ulft means upper left and 1rt means
lower right). The 1abel command may be replaced
by dotlabel, that draws a dot at the given point
in addition to the label. For example, the code
dotlabel.urt("this is a label",z0) draws a
dot at zp and places the given text in upper right
direction from zg.

Introduction to METAPOST

:
T4x?

F1GURE 6: Using IWTEX for typesetting a label

Only simple text may be used for labels that
are included by METAPOST directly. But for real
typesetting, we may use one of the best typesetting
programs we know, TEX itself. We may include
nearly arbitrary TEX stuff into labels. All TEX
snippets that occur in the METAPQOST source are
extracted and typeset with TEX, before the result
is included into the figure by METAPOST.

All the TEX stuff has to be embedded
into an environment btex ... etex, e.g.,
label(btex $z_0% etex, z0) will center the
label “zy” at this point. Normally, the plain
TEX compiler is used for typesetting the
btex ... etex fragments. But the name of the
program may be passed in command line when
calling METAPOST, so to use KIEX we just use

the command
mpost --tex=latex exl

Let’t have a look how we can typeset a label
with ITEX, using Euler math fonts to typeset a
formula:

LISTING 6: Typesetting a label with IATEX

filenametemplate
verbatimtex
\documentclass{article}
\usepackage{euler}
\begin{document}
etex
beginfig(1);
dotlabel.urt(
btex $\sqrt{\frac{1}{1+x72}}$ etex,
origin);
endfig;

"%hj-%h3c.mps";

The example contains some KTEX code within
a verbatimtex ... etex environment, that is
taken verbatim as IATEX code before typeset-
ting all the labels. Please note that it is used
to define a preamble with article as document
class and loading the euler package. While
the \begin{document} is present, the closing
\end{document} is inserted automatically.

The result of this code, when compiled by
METAPOST with using KTEX as typesetter—as
explained above—is shown in fig. [f]

Including labels causes some difficulties with
fonts. Normally, METAPOST doesn’t embed fonts
but just adds a reference to the used fonts into

Introduction to METAPOST

the PostScript output. This isn’t a problem when
METAPOST is included in a TEX document, since
TEX will resolve all of these font references. But the
figures won’t be usable standalone, since PostScript
interpreters like GhostScript will complain about
unknown fonts.

In recent versions of METAPOST it is possible
to run METAPOST in a mode that will produce
standalone PostScript output that contains a “real”
EPS with all fonts embedded, that can be displayed
in any PS interpreter or may be used in other
applications besides TEX documents.

A switch named prologues defines whether
METAPOST will embed fonts or not. Just use
the definition prologues:=3; at the start of your
METAPOST file to get a standalone EPS figure.
The default value of prologues is 0, which means
that no fonts will be embedded. The meaning of
other values of prologues may be looked up in the
METAPOST manual, they are only relevant for
special cases.

9 Conclusion

This article was intended to just give a short intro-
duction to METAPOST. I left out several things,
e.g., how to use colors, defining macros, loops etc.
Since the article is originally based on a talk that
was part of a comparison of tools, it is focussed
on what makes METAPOST unique among other

ArsTpXnica N° 6, Ottobre 2008

drawing tools: solving linear equations and hav-
ing direct access on intersection points and time
variables of paths.

If you are interested in learning METAPQOST,
please have a look into the METAPOST manual
(HoBBY/, 2008) or into the ITEX Graphics Com-
panion (GOOSSENS et al., [2007), that describes
METAPOST (among many other tools).

References

Goo0sseENSs, M., MITTELBACH, F., RAHTZ, S.,
ROEGEL, D. e Voss, H. (2007). E*TEX Graphics
Companion, The, 2nd Edition. Addison-Wesley
Professional.

HoBBY, J. D. (1989). «A METAFONT-like System
with PostScript Output». TUGboat, 10 (4). URL
http://www. tug. org/TUGboat /Articles/
tb10-4/tb26hobby . pdfl

— (2008). «METAPOST — A User’s Manualy. URL
http://www.tug.org/docs/metapost/mpman |
pdf.

> Klaus Hoppner
Haardtring 230a, 64295 Darmstadt,
Germany
klaus.hoeppner at gmx dot de

http://www.tug.org/TUGboat/Articles/tb10-4/tb26hobby.pdf
http://www.tug.org/TUGboat/Articles/tb10-4/tb26hobby.pdf
http://www.tug.org/docs/metapost/mpman.pdf
http://www.tug.org/docs/metapost/mpman.pdf

